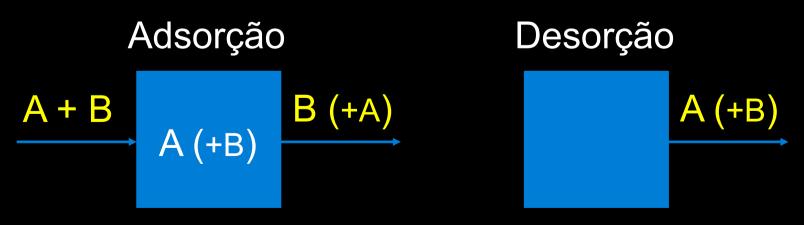
Escuela "Giorgio Zgrablich" San Luis, Argentina, 17-19 Febrero 2013

(Biased) Review of Adsorption Processes

José Paulo Mota


Universidade Nova de Lisboa

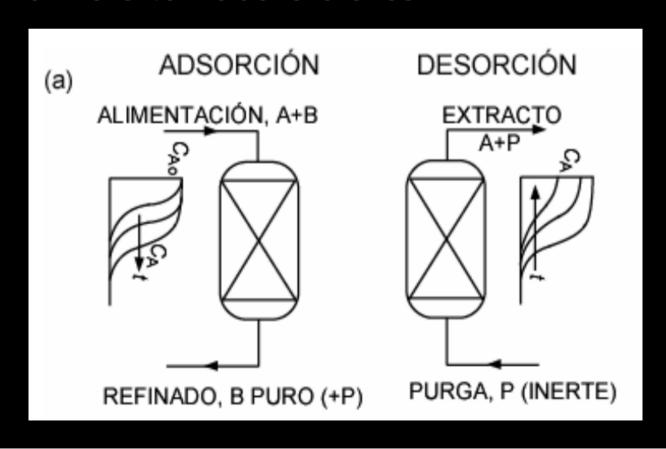
pmota@fct.unl.pt

- Introducion
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Exemplo de intensificacion processual
- Conclusions

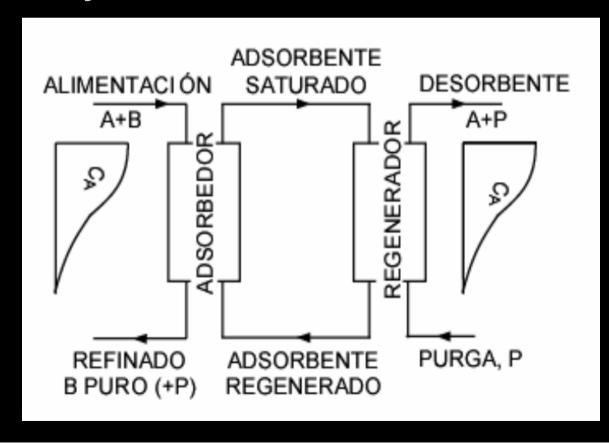
- Adsorção: retenção de um fluido na superfície ou no volume poroso de um sólido
- Perto de uma superfície sólida uma molécula de fluido sofre uma redução na energia potencial devido à interacção com os átomos (ou moléculas) no sólido. Por isso, as moléculas de fluido tendem a concentrar-se nessa região aumentando a densidade molecular na vizinhança da superfície.
- A potência das forças de superfície depende da natureza tanto do sólido como do fluido

- Retenção selectiva de um ou mais componentes de uma mistura quando esta é colocada em contacto com um adsorvente
 - Adsorção: torna a fase fluída mais rica no componente menos selectivamente adsorvido
 - Desorção: torna a fase fluída mais rica no componente mais selectivamente adsorvido e limpa o adsorvente para a sua reutilização

- Os processos de adsorção são utilizados quando:
 - A separação por destilação não é possível ou necessita de demasiados pratos teóricos
 - Separação de n e iso-parafinas
 - O hidrotratamento requer alta severidade ou não há disponibilidade de hidrogénio
 - Purificacion de hidrogeno
 - Remoção de enxofre de correntes de HCs
 - O estudo de viabilidade do processo assim o aconselha


Sistemas descontínuos (batch)

- O processo ocorre num tanque com agitação ou num leito fixo
- Utiliza-se em purificação quando o contaminante está em baixa concentração e o adsorvente tem custo reduzido


Exemplos:

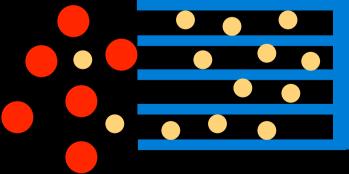
- Tratamento de águas residuales
- Tratamento de jet-fuel
- Recuperação de azeite lubrificante
- Remoção de metais pesados

- Sistemas cíclicos descontínuos (batch)
 - O leito de adsorbente é saturado e regenerado de forma alternada e cíclica

- Sistemas contínuos
 - Contacto contra-corrente entre a mistura de alimentação e o adsorvente

- Introdução
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Bibliografia

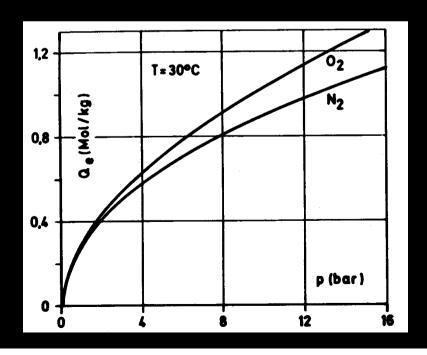
Classificação dos processos de adsorção

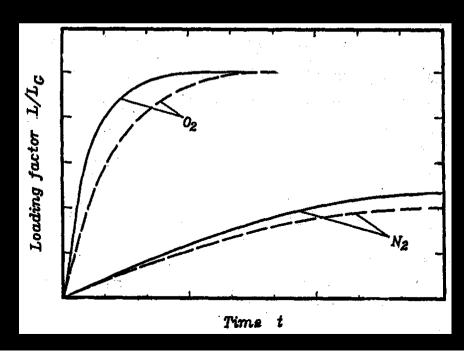

- Com base na composição da alimentação
- Com base no mecanismo de separação
- Com base no método de desorção

Con base na composição da alimentação (concentração do componente mais fortemente adsorvido): é frequentemente um factor importante na selecção do ciclo do processo

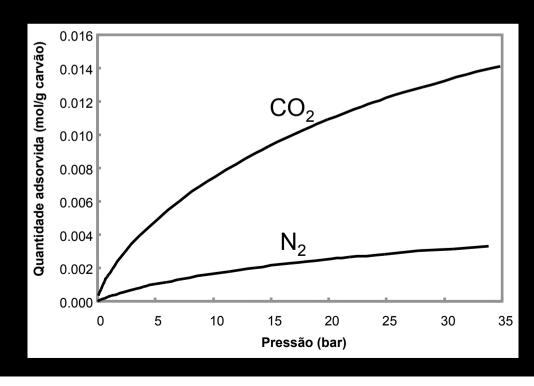
 Purificação: quando se adsorve menos do que 10% em massa da mistura alimentada

 Separação: quando se adsorve mais do que 10% em massa da mistura

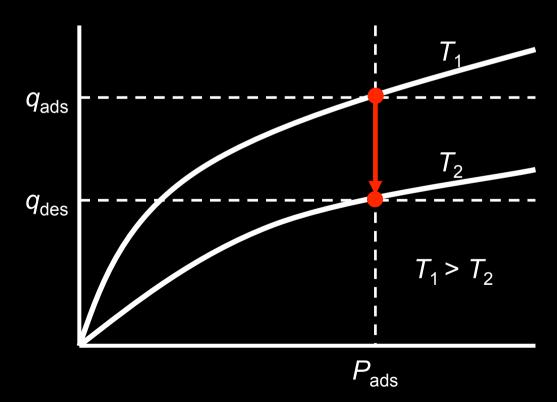

- Com base no mecanismo de separação (estérico, cinético ou por equilíbrio)
 - Separacão estérica. Propriedade de peneiro molecular dos zeólitos
 - Moléculas pequenas e com forma adequada podem difundir nos poros do adsorvente
 - Todas as outras moléculas são excluidas e permanecem na fase fluída

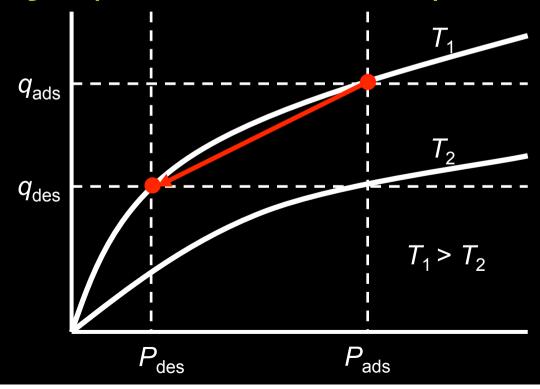


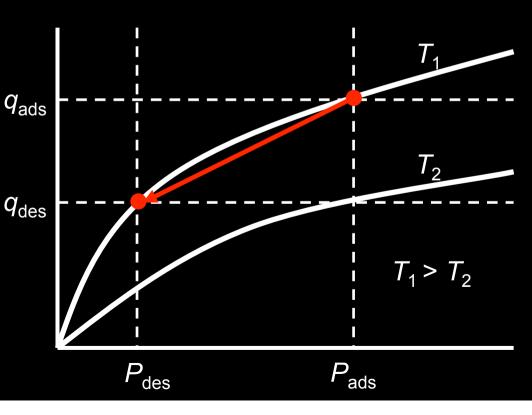
Separações estéricas em peneiros moleculares

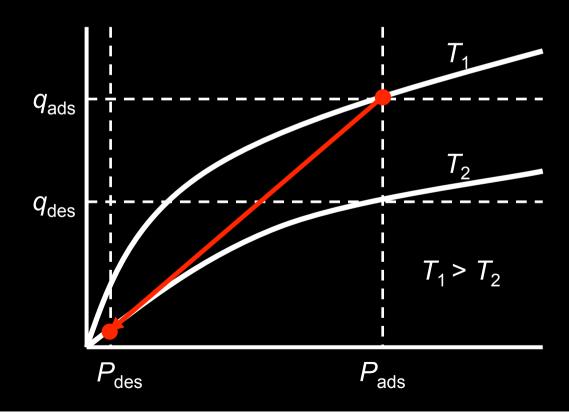

Zeólito	Moléculas adsorvidas	Moléculas excluidas	Aplicações típicas
3A	H ₂ O, NH ₃ , He (diâmetro efectivo < 3 Å)	$\mathrm{CH_4, CO_2, C_2H_2, O_2,}$ $\mathrm{C_2H_5OH, H_2S}$ (diâmetro efectivo > 3 Å)	Desidratação de gás craqueado, etileno, butadieno e etanol
4A	H_2S , CO_2 , C_2H_6 , C_3H_6 , C_2H_5OH , C_4H_6 (diâmetro efectivo < 4 Å)	C ₃ H ₈ , óleo de compressor (diâmetro efectivo > 4 Å)	Desidratação de gás natural, parafinas líquidas, e solventes. Remoção de CO ₂ de gás natural.
5A	n-parafinas, n-olefinas, n- C ₄ H ₉ OH (diâmetro efectivo < 5 Å)	Compostos iso, todos os aneis de carbono (diâmetro efectivo > 5 Å)	Recuperação de <i>n</i> -parafinas de nafta e querosene
10X	Iso-parafinas, iso-olefinas (diâmetro efectivo < 8 Å)	Di- <i>n</i> -butilamina e superiores (diâmetro efectivo > 8 Å)	Separação de aromáticos
13X	Di- <i>n</i> -butilamina (diâmetro efectivo < 10 Å)	(C ₄ F ₉) ₃ -N (diâmetro efectivo > 10 Å)	Desulfuração, desidratação genérica, remoção de H ₂ O e CO ₂

- Con base no mecanismo de separação (estérico, cinético ou de equilíbrio)
 - Separação cinética. Baseada nas diferenças entre taxas de difusão de moléculas distintas
 - Utilizada comercialmente para produzir N₂ do ar em peneiro molecular de carbono (CMS)




- Com base no mecanismo de separação (estérico, cinético ou de equilíbrio)
 - Separação por equilíbrio. Baseia-se na dependência da capacidade de adsorção com o tipo de molécula adsorvida (adsorvato)
 - Corresponde ao mecanismo mais habitual de separação por adsorção


- Com base no método de desorção
 - TSA (câmbio de temperatura). O leito é regenerado por aquecimento a pressão constante.
 - Em geral, utiliza-se um gás quente em substituição da permuta indirecta de calor


- Com base no método de desorção
 - PSA (Modulação de pressão). A regeneração ocorre por redução da pressão, mantendo a temperatura essencialmente constante
 - Desorção por vácuo = caso especial de PSA

- Com base no método de desorção
 - Purga com inerte. A regeneração ocorre com a introdução de um gás inerte, mantendo a temperatura e pressão constantes
 - É equivalente a um PSA com variação das pressões parciais em vez da pressão total

- Com base no método de desorção
 - Purga con gás inerte quente. É a combinação do TSA com uma purga inerte

- Com base no método de desorção
 - Desorção por substituição. T e P são mantidos constantes, como na regeneração com purga, mas a purga inerte é substituida por uma corrente contendo um componente que adsorve
 - Purga com vapor de água vapor (usada na regeneração de sistemas de recuperação de solventes) = TSA + desorção por substituição

Classificação dos processos de adsorção

Regeneração do adsorvente

Método	Vantagens	Desvantagens
Módulação térmica	Bom quando adsorção é forte; pequena variação de <i>T</i> produz variação grande de <i>q</i>	Envelhecimento térmico do adsorvente
	O produto pode ser recuperado em concentração elevada	Perdas térmicas significam uso ineficiente de energia
		Não é adequado para ciclos rápidos; o adsorvente não pode ser usado com eficiência máxima
	Gases e líquidos	Em sistemas líquidos tem que se adicionar um calor latente elevado ao líquido intersticial

Classificação dos processos de adsorção

Regeneração do adsorvente

Método	Vantagens	Desvantagens
Módulação de pressão	Bom para purificação de substâncias com potencial de adsorção reduzido	Pode ser necessário trabalhar a uma pressão muito baixa
		Energia mecânica é mais dispendiosa do que a energia térmica
	Ciclos rápidos – uso eficiente do adsorvente	Desorvente é recuperado com baixa pureza
Desorção por substituição	Bom para espécies fortemente adsorvidas	Necessita de separação e recuperação do produto (a selecção do desorvente é crucial)
	Impede o risco de reacções de craqueamento durante a regeneração	
	Impede o envelhecimento térmico do adsorvente	

- Introdução
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
 - Equilíbrio e cinética de adsorção
 - Transferência de massa e de calor
 - Escoamento através do leito
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Bibliografia

- Capacidade de adsorção em função de P, T, y_i
 - Isotérmica multi-componente: q_i*(P,T,y₁,...,y_m)
- Como varia o factor de separação (selectividade) com as condições operatórias
- A cinética de adsorção é rápida ou lenta?
 - $k_i = k_i (d_p, k_{if}, D_{ie}, D_{ic})$
- Qual é a importância dos efeitos térmicos?
 - Calor isostérico de adsorção, Q_{st}
- Quais são os efeitos do tamanho de partícula (d_p)
 - ΔP, dispersção hidrodinâmica, transferência de calor e massa

- Equilíbrio de adsorção
- Medição das isotérmicas dos componentes puros

$$q_i^{\circ}(P,T) = \frac{q_{im}b_iP^{n_i}}{1+b_iP^{n_i}}, \quad q_{im}, b_i, n_i : \text{ funcões de } T$$

- Previsão do equilíbrio multi-componente

• Modelos semi-empíricos
$$q_{im}b_iP^n$$

• $q_i^*(P, T, y_1, ..., y_m) = \frac{1 + b_1(y_1P)^n + ... + b_m(y_mP)^n}{1 + b_1(y_1P)^n + ... + b_m(y_mP)^n}$

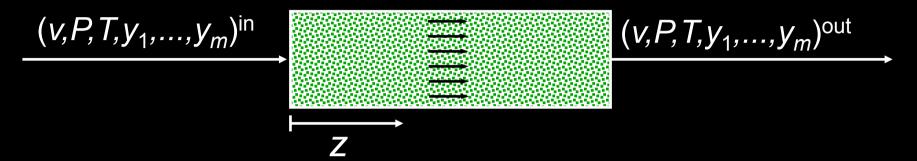
- Teorias de adsorção (IAS, RAS, VCS, DP, etc.)
- Calor isostérico de adsorção

$$Q_{ist} = RT^2 \left[\frac{\partial \ln(y_i P)}{\partial T} \right]_{q_1, \dots, q_m}$$

Fenómenos de transporte

Fase fluida

- Taxa efectiva de adsorção
- Filme externo de fluido -(camada limite laminar)
- Macroporos intercristalinos.
- Cristais microporosos
- Taxa efectiva


$$\frac{\partial \overline{q}_i}{\partial t} = k_i (q_i^* - \overline{q}_i)$$

Carvão activado
$$\frac{1}{k_i} = \frac{\rho_p K_i^* R_p}{3 k_{if}} + \frac{(15\epsilon_p)^{-1} R_p^2}{D_{is} + \frac{(\tau_p \rho_p K_i^*)^{-1}}{1/D_{im} + 1/D_{iK}}} K_i^* = \frac{\partial q_i^*}{\partial c_i}$$

Pastilha zeólito

$$\frac{1}{k_i} = \frac{\rho_p K_i^* R_p}{3 k_{if}} + \frac{\tau_p \rho_p K_i^* R_p^2}{15 \epsilon_p} \left(\frac{1}{D_{im}} + \frac{1}{D_{iK}} \right) + \frac{R_c^2}{15 D_{ic}}$$

Escoamento através do leito

Perfil de concentração ao longo do leito

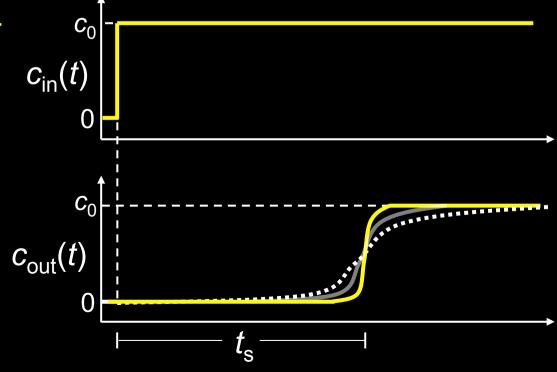
$$\frac{\partial c_i}{\partial t} + \frac{1 - \epsilon}{\epsilon} \frac{\partial \overline{q}_i}{\partial t} = \frac{\partial}{\partial z} \left(D_{iL} \frac{\partial c_i}{\partial z} \right) - \frac{\partial}{\partial z} (c_i v)$$

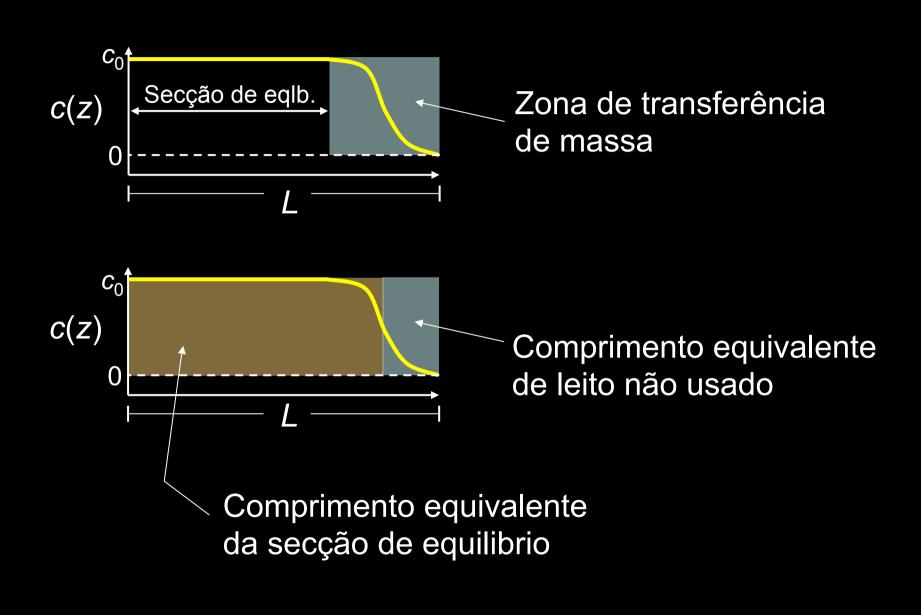
$$D_{iL} = 0.7 D_{im} + 0.5 d_p |v|$$

Perfil de velocidade e perda de carga

$$\mathbf{v} = -\frac{2}{1 + \sqrt{1 + 4K_E(\rho_g/\mu^2)|\partial P/\partial z|}} \frac{K_D}{\mu} \frac{\partial P}{\partial z} K_D = \frac{\phi^2}{180}, K_E = \frac{1.8 \,\phi^3}{(180)^2}, \phi = \frac{\epsilon \,d_p}{1 - \epsilon}$$

Perfil de temperatura


$$\frac{1-\epsilon}{\epsilon}\rho_{p}\left(C_{s}\frac{\partial T}{\partial t}-Q_{st}\frac{\partial \overline{q}}{\partial t}\right)+C_{g}cv\frac{\partial T}{\partial z}-\frac{\partial}{\partial z}\left(D_{H}\frac{\partial T}{\partial z}\right)=\frac{2h_{w}}{\epsilon R_{c}}(T_{w}-T) \quad \begin{array}{c}D_{H}=D_{H}^{0}+Q_{st}^{$$

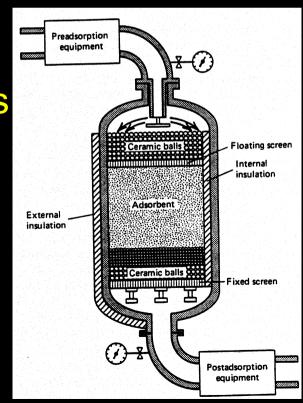

 Curva de ruptura: evolução da concentração do soluto à saída da coluna após variação em degrau na sua concentração de entrada

$$c_{\text{out}}(t) = c(z = L, t)$$

Tempo estequiométrico

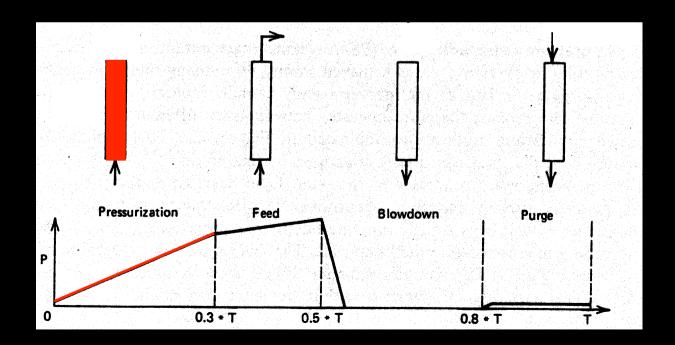
$$\mathbf{t_s} = \frac{1 - \varepsilon}{\varepsilon} \frac{L}{v} \frac{\rho_p q^*}{c_0}$$

- Efeito da dispersão e da cinética de adsorção
 - Suaviza os perfís de concentração
 - Dispersa a curva de ruptura
 - Aumenta a zona de transferência de massa
 - Reduz o comprimento equivalente da secção de equilíbrio
 - Aumenta o comprimento equivalente de leito n\u00e3o utilizado
 - Diminui a quantidade de leito efectivo utilizado
 - Reduz a pureza do produto ou a produtividade

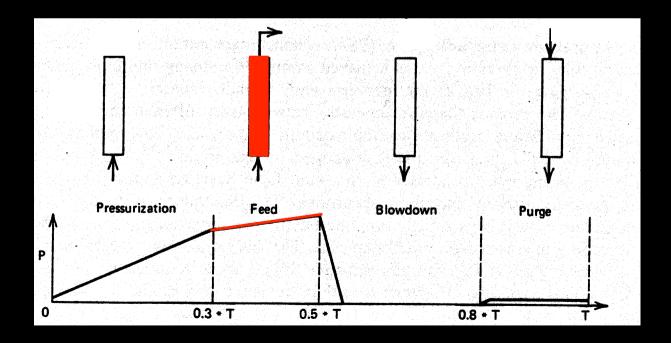

- Introdução
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Bibliografia

- Primeiro processo de adsorção a ser desenvolvido
- Os componentes adsorvidos são recuperados por aumento da temperatura do leito
- Normalmente utiliza-se dois leitos para produção contínua
 - O número de leitos é determinado pelo perfil da curva de ruptura e pelo tempo necessário para a desorção
- Os ciclos são longos e pode ocorrer a formação de coque no leito em processos de separação ou purificação de hidrocarbonetos

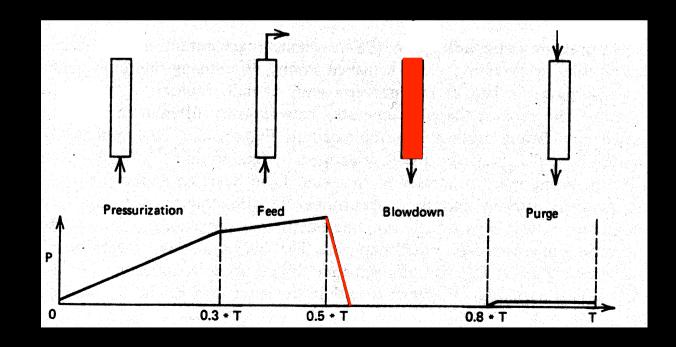
Exemplos:


- Secagem de gases e líquidos
- Purificação de dissolventes
- Aspectos a ter em consideração no Estudo de Viabilidade Técnico-económica do TSA:
 - A temperatura pode destruir o adsorvato
 - O tempo de vida útil do adsorvente diminui com a temperatura (envelhecimento térmico)
 - O custo do adsorbente pode ser um factor importante
 - Há que ter em conta a disposição final do adsorvato e do adsorbente

- Princípio de separação por PSA
 - Adsorção: produz uma fase gasosa mais rica no componente menos adsorvido
 - Desorção dos componentes mais fortemente adsorvidos
 - Produz uma fase gasosa enriquecida nos componentes mais adsorvidos
 - Limpa o adsorvente para a sua reutilização

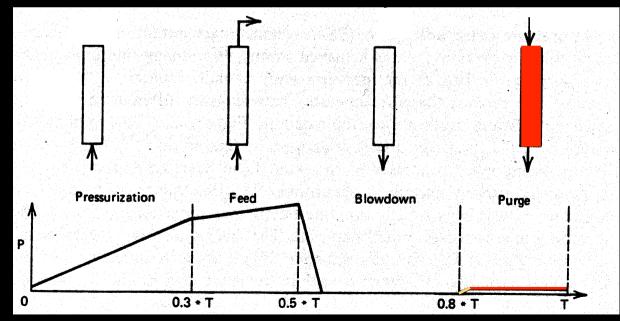

Pressurização

• A coluna é pressurizada desde P_{baixa} até P_{alta} com a mistura gasosa de alimentação através de uma das extremidades da coluna (cocorrente) mantendo o outro extremo fechado.

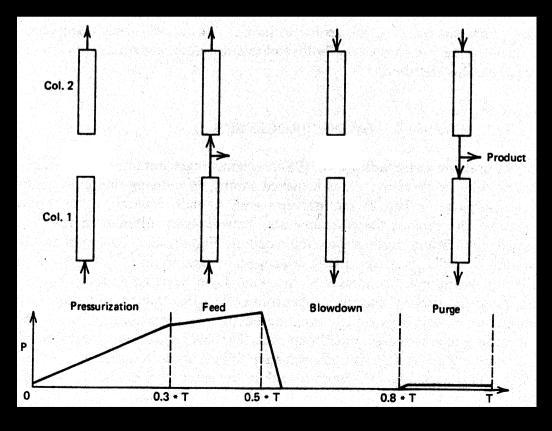


Adsorção

 A coluna continua a ser alimentada com o gás de alimentação à pressão constante P_{alta}, obtendo-se no outro extremo um produto gasoso rico no componente menos adsorvido



- Blowdown (despressurização)
 - A pressão na coluna é diminuída até ao seu valor mais baixo P_{baixa} por remoção do gás pelo extremo da coluna onde esta foi alimentada (contra-corrente)


Purga

- A coluna é purgada a P_{bajxa} com um gás rico no componente menos adsorvido em direcção contra-corrente
- Normalmente, na purga utiliza-se parte do gás produzido na etapa de adsorção

- Produção contínua multiplos leitos
 - Duas colunas são pressurizadas e despressurizadas alternadamente para originar um processo global contínuo

Aplicações principais do PSA

```
Desidratação de gases
Separação do ar
```

Produção de gás enriquecido em 80-95% de O₂

Produção de gás enriquecido em 20-50% de O2

Produção de gás enriquecido em 95-99.9% de O₂

Purificação de Ar

Remoção de H₂O e CO₂ do ar alimentado a colunas de destilação

Separação de CO2-CH4

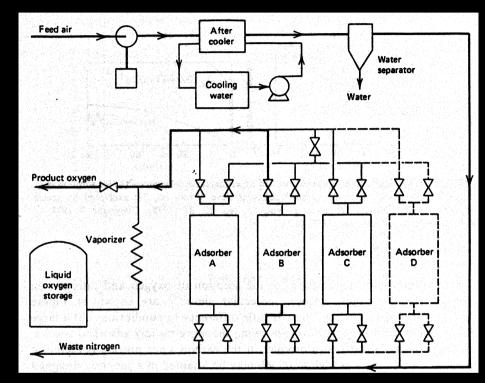
Produção de CO₂

Produção de H₂

Aplicações variadas

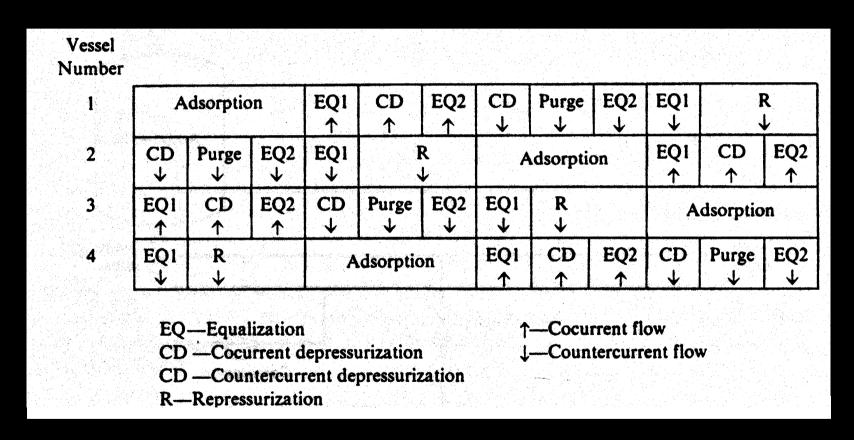
Separação de n-parafinas e iso-parafinas

Recuperação de He


Desidratação de alcoóis

Enriquecimento de ozono

Remoção e recuperação de solventes gasosos


Separação do ar

- Produção de O₂
 - Zeólito 5A
 - N₂ adsorve preferencialmente (equilíbrio)
 - $\alpha(25^{\circ}C) = 3.0-3.5$
- Produção de N₂
 - CMS
 - O₂ tem cinética de adsorção mais rápida (cinética)

CD	Adsorption			CD ↑	EQ2 ↑	↓	Purge ↓	EQ2 ↓	EQ1 ↓		R ↓	
CD ↓	Purge ↓	EQ2 ↓	EQ1 ↓		R ↓	A	dsorption		EQ1 ↑	CD ↑	EQ2	
EQ1 ↑	CD ↑	EQ2 ↑	CD	Purge ↓	EQ2 ↓	EQ1 ↓	R ↓		A	dsorptic	dsorption	
EQ1 ↓			Adsorption			EQ1 ↑	CD ↑	EQ2 ↑	CD	Purge ↓	EQ2 ↓	
AND THE RESERVE				urization	ı	a diam'ny mana				w		
	EQI	EQ1 CD ↑ ↑ EQ1 R ↓ ↓ EQ—Equal CD—Cocu CD—Cour	EQ1 CD EQ2 ↑ ↑ ↑ EQ1 R ↓ ↓ EQ—Equalization CD—Cocurrent d CD—Countercurrent	EQ1 CD EQ2 CD ↑ ↑ ↑ ↓ EQ1 R ↓ ↓ EQ—Equalization CD—Cocurrent depressi	EQ1 CD EQ2 CD Purge ↑ ↑ ↑ ↑ ↓ EQ1 R Adsorption EQ—Equalization CD—Cocurrent depressurization CD—Countercurrent depressurization	EQ1 CD EQ2 CD Purge EQ2 ↑ ↑ ↑ ↓ ↓ ↓ EQ1 R Adsorption EQ—Equalization CD—Cocurrent depressurization CD—Countercurrent depressurization	EQ1 CD EQ2 CD Purge EQ2 EQ1 ↑ ↑ ↑ ↑ ↓ ↓ ↓ EQ1 R Adsorption EQ1 ↑ CD—Cocurrent depressurization CD—Countercurrent depressurization	EQ1 CD EQ2 CD Purge EQ2 EQ1 R ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ EQ1 R Adsorption EQ1 CD ↑ ↑ ↑ ↑ EQ—Equalization ↑—Cocurent depressurization CD—Countercurrent depressurization	EQ1 CD EQ2 CD Purge EQ2 EQ1 R ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ EQ1 R Adsorption EQ1 CD EQ2 ↑ ↑ ↑ ↑ EQ—Equalization CD—Cocurrent depressurization CD—Countercurrent depressurization	EQ1 CD EQ2 CD Purge EQ2 EQ1 R ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ EQ1 R Adsorption EQ1 CD EQ2 CD ↑ ↑ ↑ ↑ ↓ EQ—Equalization CD—Cocurrent depressurization CD—Countercurrent flow —Countercurrent flow —Countercurren	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Produção de O₂

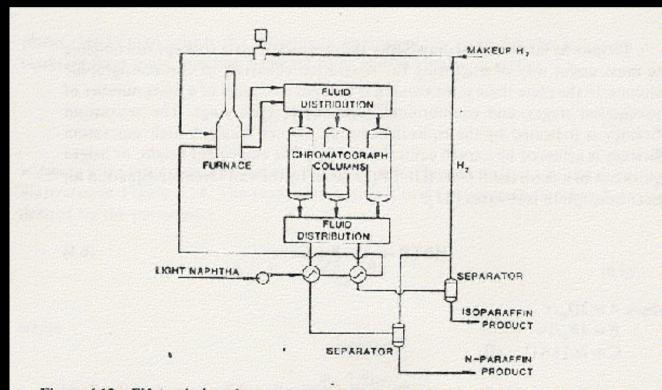
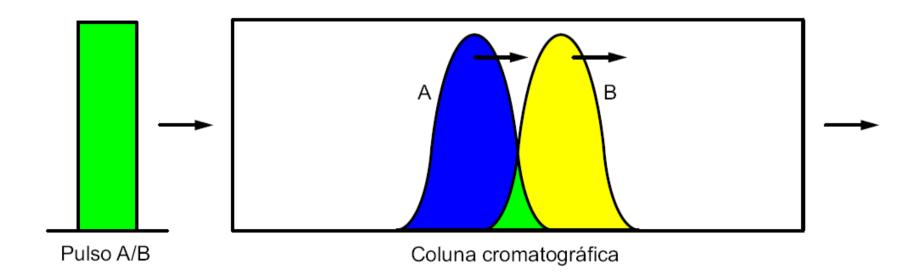
Processos cíclicos descontínuos – cromatografia preparativa

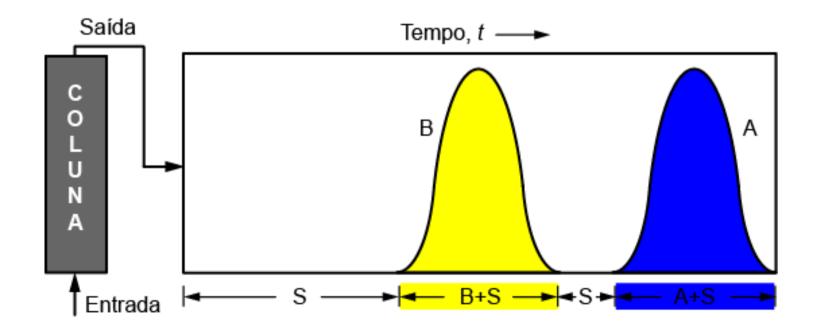
- Cromatografia preparativa
- Cascata de colunas cromatográficas
- Para separação de productos com volatilidade relativa muito pequena e factores de separação por adsorção muito baixos (produtos farmacéuticos)
- Normalmente, cada coluna tem um número elevado de pratos teóricos
- Factores chave:
 - Empacotamento homogéneo da fase estacionária
 - Gas inerte
 - Baixa dispersão radial
 - Efeitos térmicos

Procesos cíclicos en batch – cromatografía preparativa

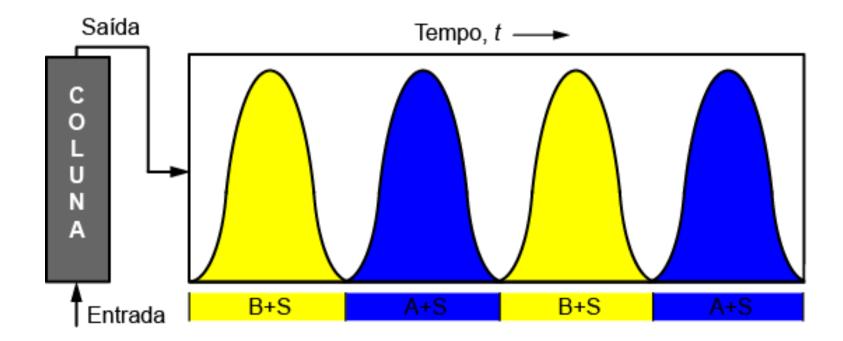
Exemplos:

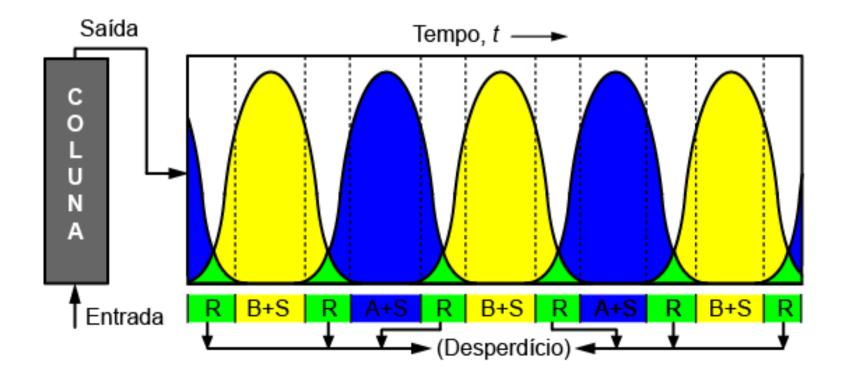
- Separação de n e iso-parafinas (Elf)
- Separação de xilenos (Asahi)

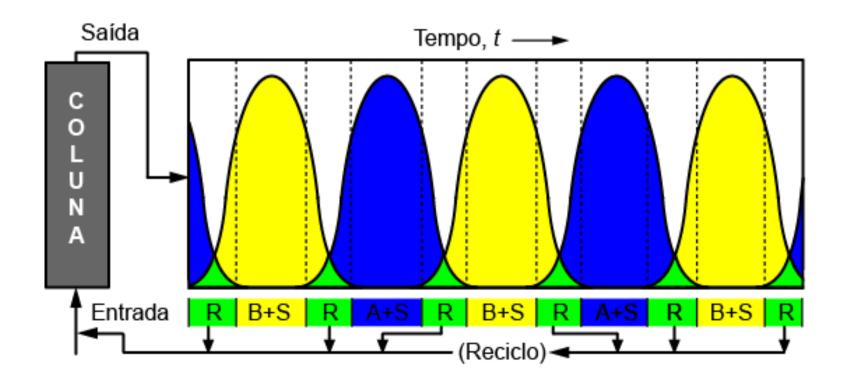




Figure 6.12 Elf Aquitaine chromatographic separator for separating n- and iso-paraffin from a light naphtha feed. Source: Keller [1]. Reprinted with permission.

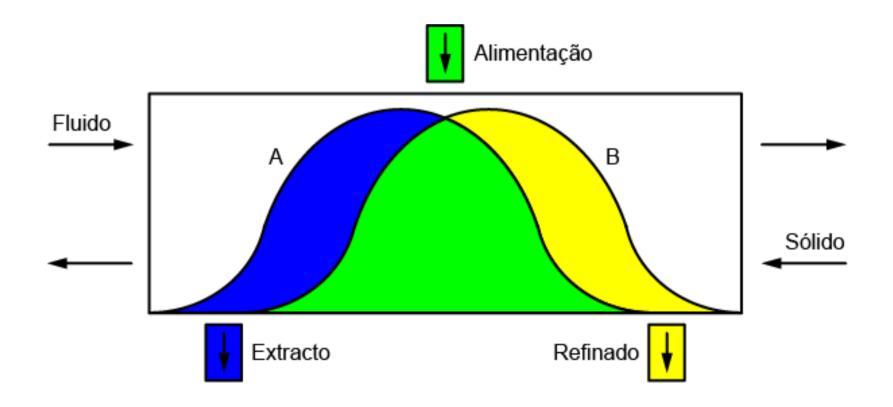
- Introdução
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Bibliografia


- One adsorption column + 2 solutes (A/B) + suitable solvent (S)
- A is more retained by the solid than B
- The column is fed with (A+B+S) in pulses (□□□□) interleaved by elution with pure S

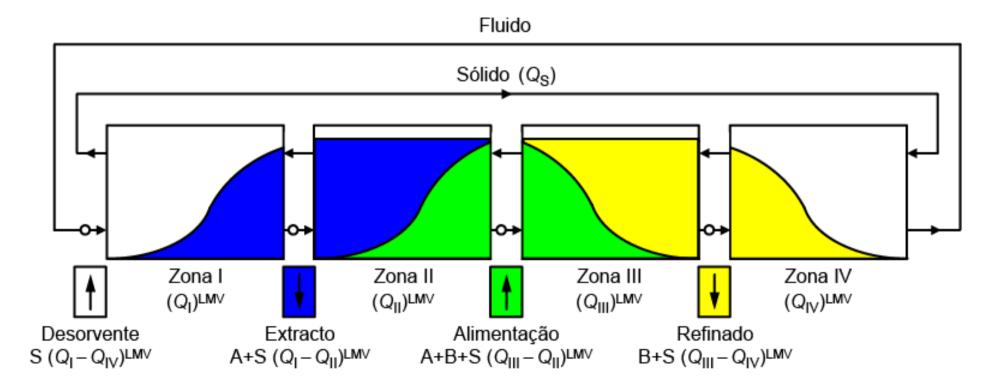

- The migration velocities of A and B through the column are different
- A and B are collected at the same point (downstream end), but at different times


- Design variables:
 - Feed concentration
 - Pulse duration (☐☐☐)
 - Frequency of feed injection (☐☐☐)

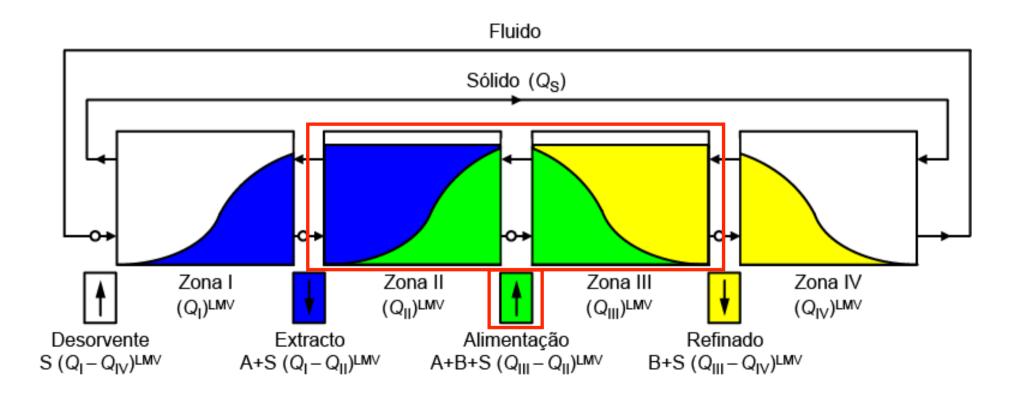
- Difficult separations (low selectivity)
 - Partial fraction collection
 - Rejection of mixed fractions

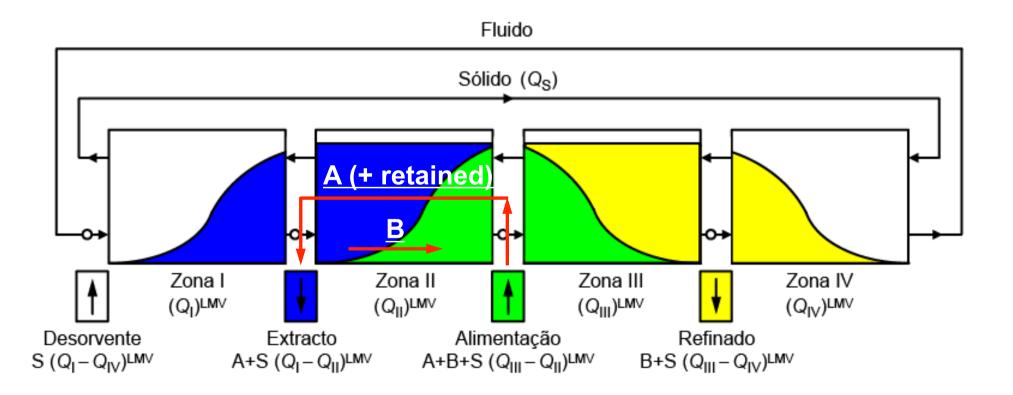


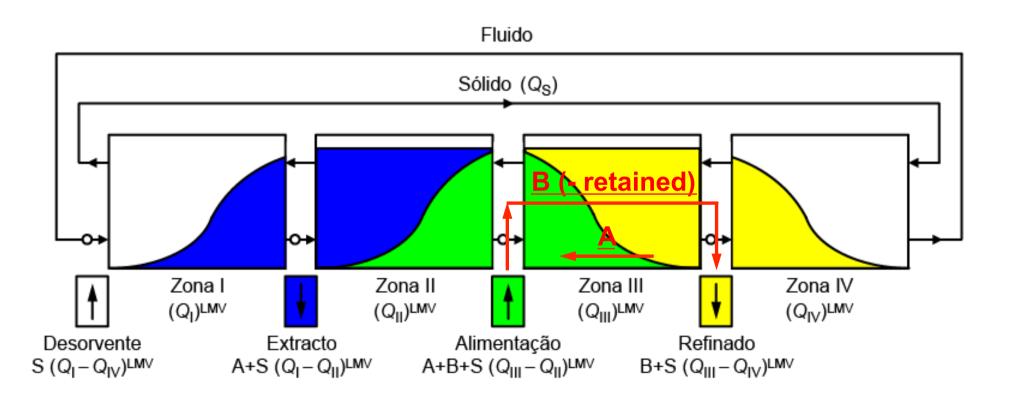
- Difficult separations (low selectivity)
 - Recycling: reintroduce mixed fraction into column inlet synchronously with the pulsed feed

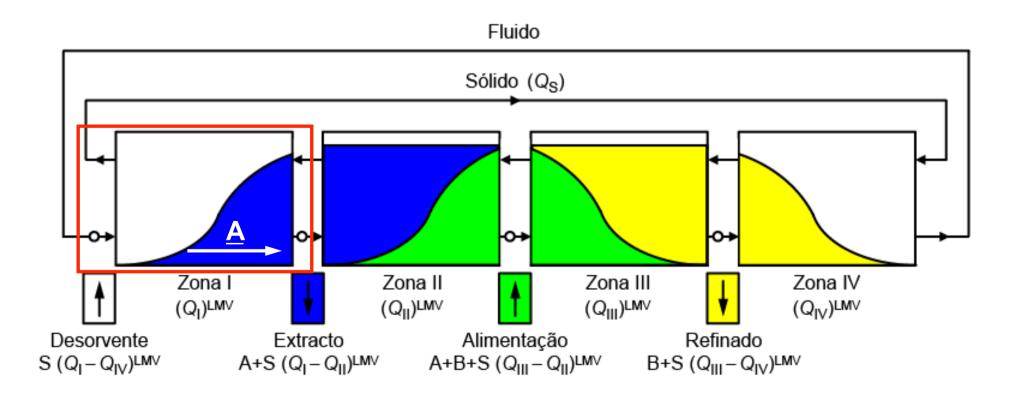


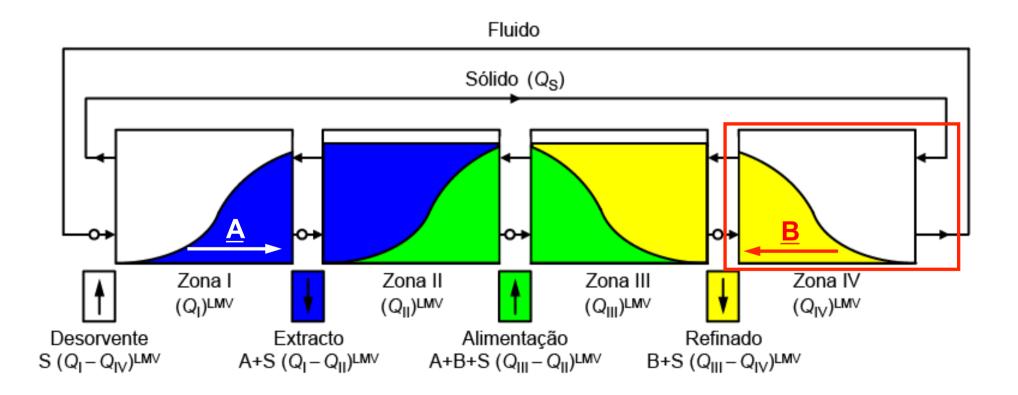
Countercurrent adsorption

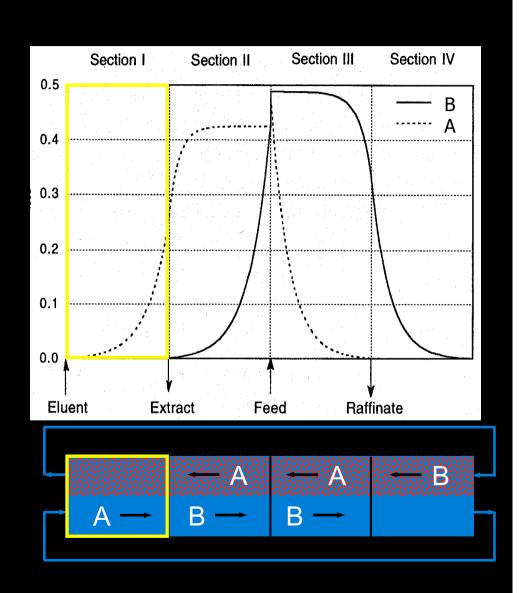

 The solid moves counter currently to the fluid flow with a velocity which is intermediate between the migration velocities of A and B

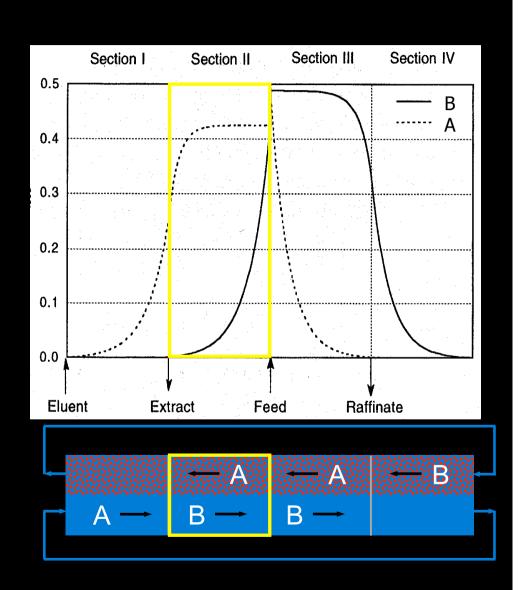

 4 zones (or sections) arranged in a closed ring, each one operated in countercurrent mode and having a specific task for the separation

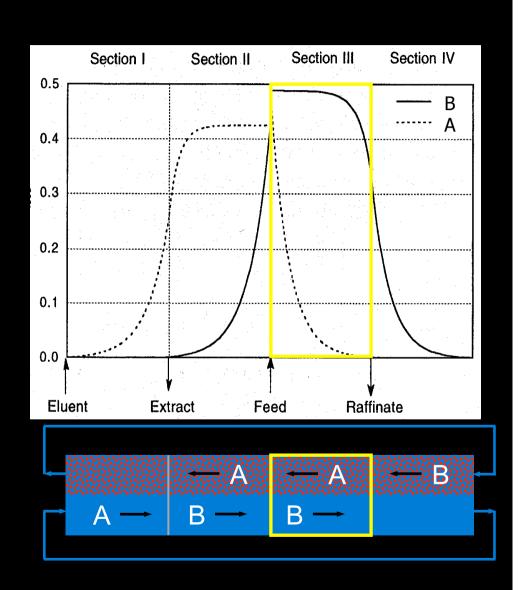

Zones II and III: separation of A and B

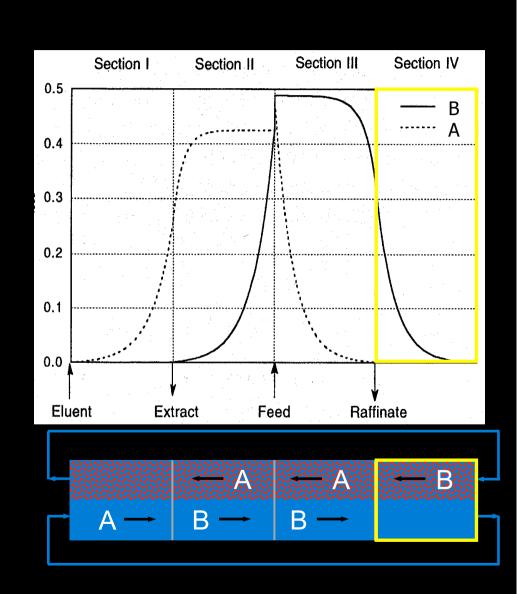

 Zone II: prevent contamination of the extract with the less retained component

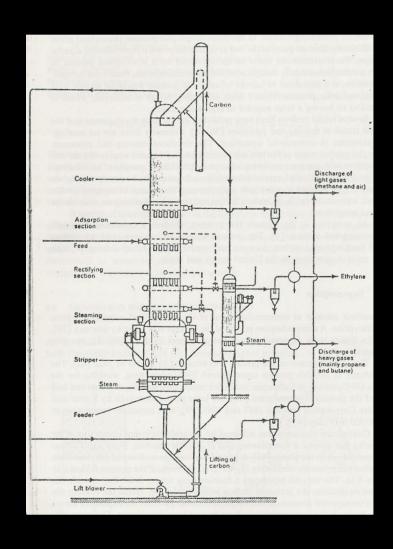

 Zone III: prevent contamination of the raffinate with the more retained component


Zone I: regenerate the solid

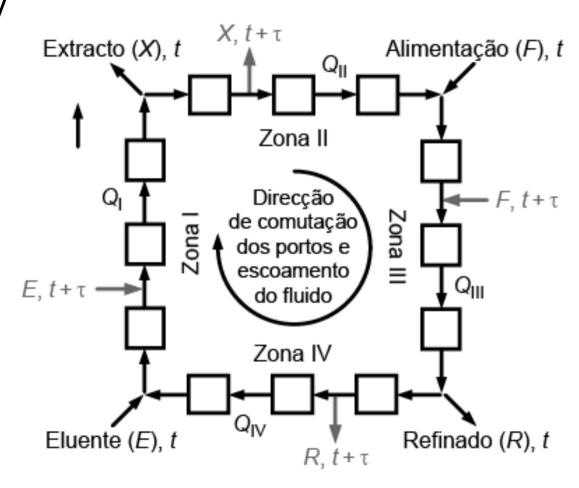

Zone IV: regenerate the desorbent


- Secção I
- Desorção de B
- Garantir que o sólido está limpo quando é enviado para a secção IV

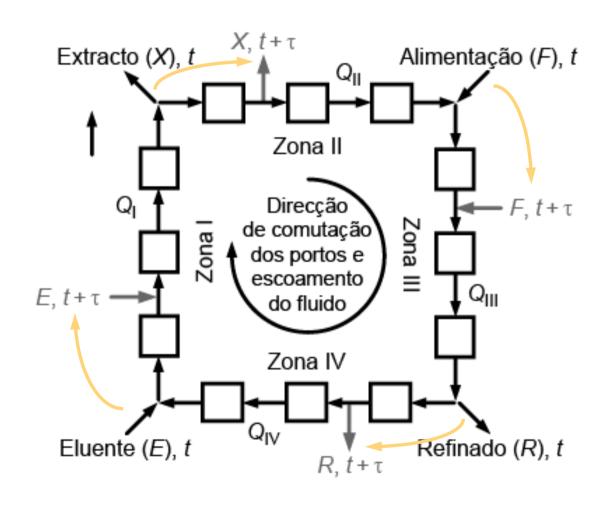

- Sección II
- Desorção de A
- Evitar que o componente menos adsorvido (A) contamine o extracto


- Sección III
- Adsorção de B
- Evitar que o componente mais adsorvido (B) contamine o refinado

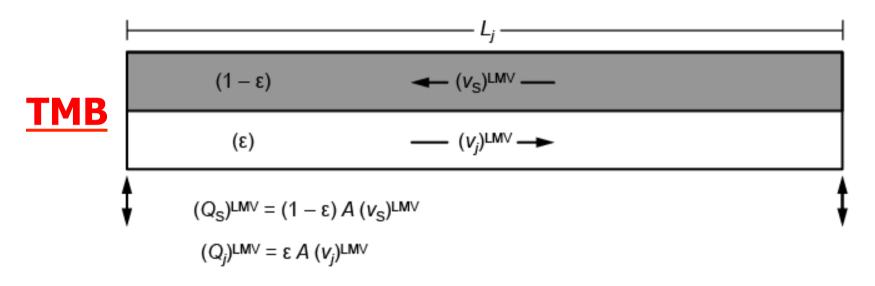
- Secção IV
- Adsorção de A
- Garantir que o líquido está limpo quando é enviado para a secção l



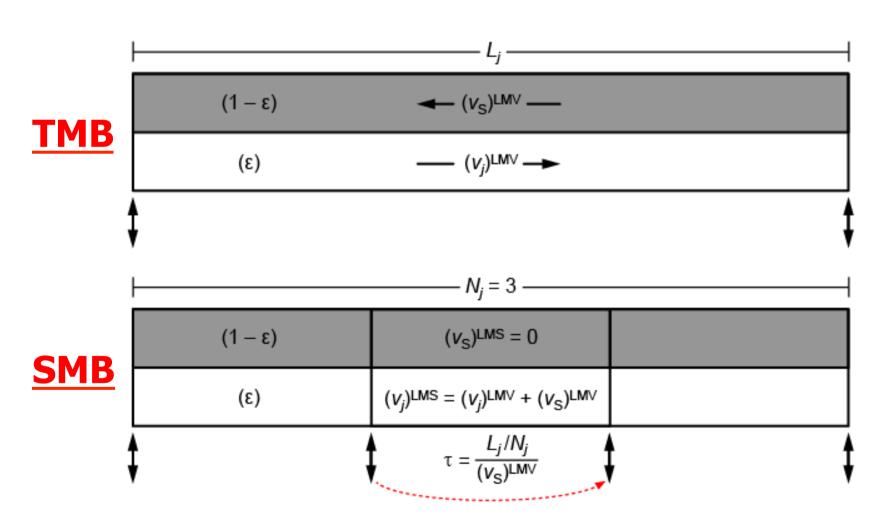
- Implementação do TMB
- Hypersorption: 6
 unidades construídas
 entre 1947 e 1949 para
 a recuperação de
 etileno de gas de
 craqueamento com
 carvão (Union Oil
 Company)
- Não há processos comerciais
- Dificuldade: movimento do sólido



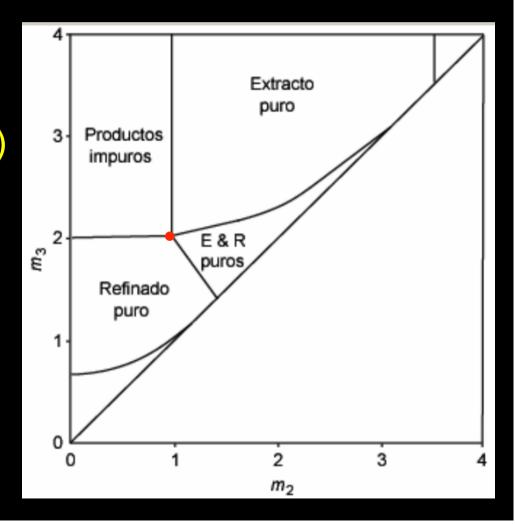
- Physical movement of the solid is difficult in practice and causes operating problems:
 - Attrition (or erosion) between adsorbent particles and the column wall
 - Backmixing of adsorbent particles increases dispersion of concentration profiles
- SOLUTION: simulate solid movement using various fixed beds and periodically shifting the positions of the inlet/outlet ports in the direction of fluid flow = SMB process


 SMB simulates in a discrete way the continuous operation of the TMB process

 Every T times units, the ports are shifted by one column in the direction of the fluid flow



Conversion rules from TMB to SMB


A = cross-sectional area of the TMB column $\varepsilon = bed$ porosity Q = volumetric flow rate <math>v = interstitial velocity

Conversion rules from TMB to SMB

- Design variables
 - $-Q_{I}, Q_{II}, Q_{III}, Q_{IV}, \tau, c^{F}$
 - Minimal purities of extract and raffinate
 - Minimal product recoveries
 - Productivity
- Triangle theory (equilibrium theory = infinite column efficiency)
- Rigorous process simulation & optimization

- Parâmetros de operação
- Q_s, Q₁, Q₂, Q₃, Q₄
 ou
 Q_s, Q_F, Q_E, Q_X, Q₄
- Teoria do triângulo (solução de equilíbrio)
- $m_j = Q_j / Q_s$

- Parâmetros de operação
 - Tempo de comutação

$$\mathbf{v} = (1-\varepsilon) V_{\text{col}} / Q_{\text{s}}$$

Caudal de líquido em cada secção

$$Q_{j}^{SMB} = Q_{j}^{TMB} + \varepsilon V_{col} / \tau$$

$$m_j = \frac{Q_j^{\text{SMB}} \tau}{(1-\epsilon)V_{\text{col}}} - \frac{\epsilon}{1-\epsilon}$$

Refinação de petróleo e petroquímica (Sorbex)

Unidades Sorbex comercializadas (1994)

Processo	Separação	Unidade
Parex	p-xileno de hidrocarbonetos C8	53
Molex	n-parafinas de hidrocarbonetos ramificados e cíclicos	33
Olex	Olefinas de parafinas	6
Cymex	p- ou m-cumeno dos dois isómeros	1
Cresex	p- ou m-cresol dos dois isómeros	1
Sarex	Separação da Frutose	5
Citrex	Purificação de ácido cítrico	1

Esquema processual da unidade Sorbex

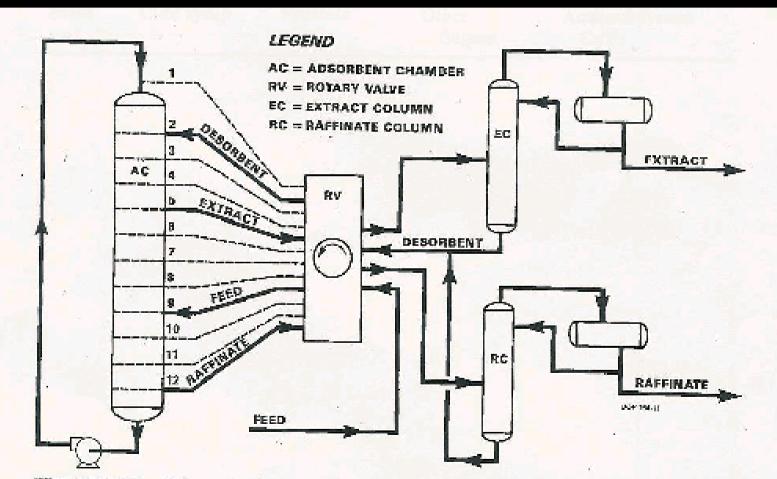
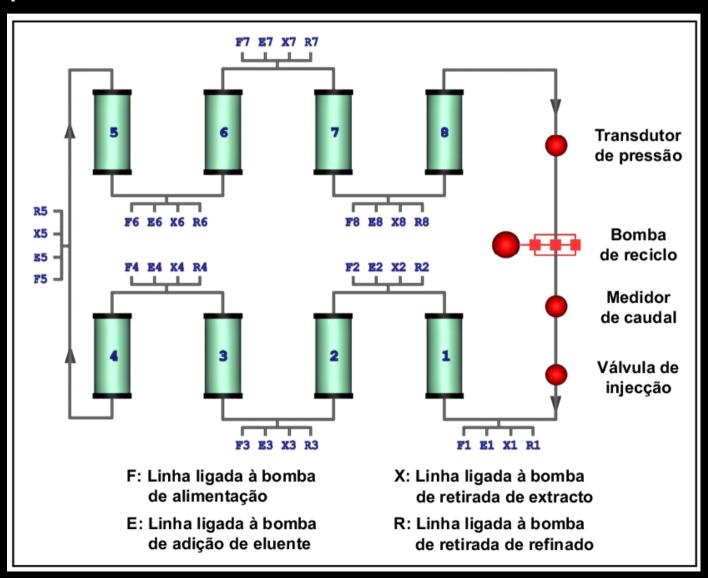
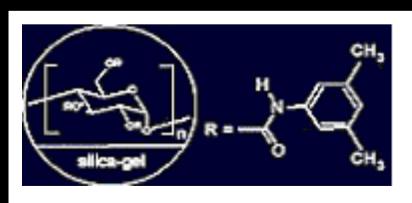
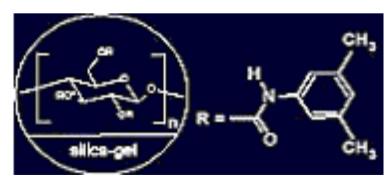



FIGURE 12.12. Schematic diagram of the UOP. Sorbex process showing simulated moving-bed system. (From ref. 2, reprinted by permission of UOP.)

Esquema processual alternativo com válvulas

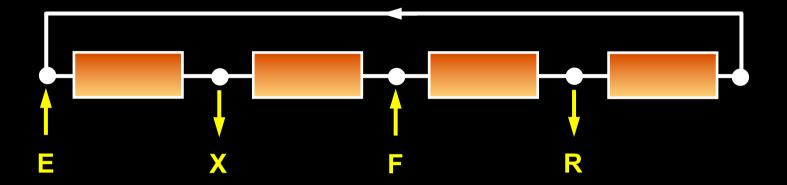

de duas vias

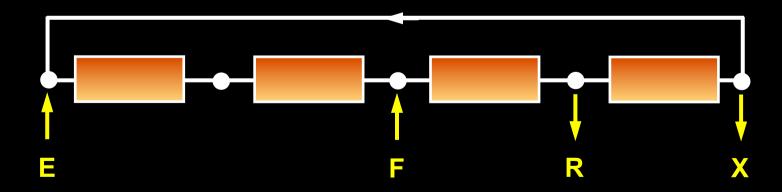


Scaledown do processo originou novas aplicações em biotecnologia, farmaceutica e química fina

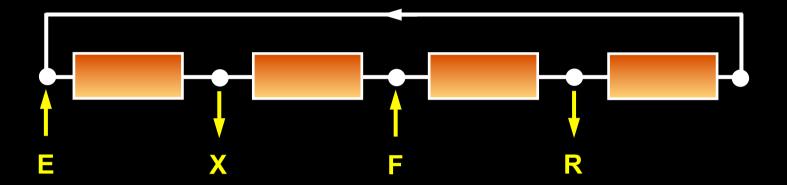
Substance	Company	Stationary phase e.g.	Selectivity (linear range)	Column (No., length ×diameter, mm)	Feed concentration (g racemate/l)	Feed-flow (ml/min)	Productivity (G/enantiomer/ d kg CSP)	Eluent consumption (I/g enantiomer)	SMB system
Sandoz-epoxide	Sandoz	CTA	1.28	12, 110×26	10.0	1.52	35.3	0.80	Novasep
n/L-Threonin	Novmep	Chicosol Prolin	1.60	8, 1000×26	5.0	4.20	4.01	0.99	Novasep
WEB 2170	Bochringer Ingelheim	CTA		8, 100×90	100.0	23.20	1453	0.18	Novasep
cis/trans-Phytol	Novisep	LiChrospher Si	1.16	8, 400×200	105.0	130.0	549	0.08	Novasep
1-Phenylethanol	Daicel	Chiralcel OD		8, 150×20	39.1	0.5	70	3.33	Laboratory made
Praziquantel	University of Singapore	CTA	3.42	4, 445×12.5	50.0	0.30	123	0.59	Laboratory made
Sandoz-epoxide	Sandoz	Chiralcel OD	1.53	12, 100×16	20.0	0.40	37	0.50	Laboratory made
1,1'-Binaphthyl-2,2'-diol	Novasep/Merck	Chirasep DNBPG	1.24	8, 80×200	0.30	157.5	2.13	41.1	Novasep
Aminoglutethimide	Ciba	Chiralcel OJ	2.07	8, 80×26	16.0	2.64	160	1.55	UOP
Guafenesin	Ciba	Chiralcel OD	2.43	16, 60×21	30.0	0.75	77 -	0.67	UOP
Formoterol	Ciba	Chiraleel OJ	1.43	16, 60×16	2.50	0.52	11	10.25	UOP
CGS 26214	Ciba	Chiralcel OJ		8,80×26	5.0	2.5	47.4	4.56	UOP
EMD 53986	Merck	Polyacrylamide	2.82	8,54×26	12.0	3.32	319	2.54	Novasep
EMD 53986	Merck	Chiralpak AD	3.1	8, 50×26	6.0	10.0	432	2.60	Novasep
Seebach-oxazolidinone	ETH Zürich/Merck	Chiraspher	1.87	8, 131×26	15.0	1.90	103	1.82	Novasep
Chloropropiophenone	UOP	Chiralcel OD	1.3					8.27	UOP
EMD 53986	Merck	Chiralpak AD	3.1	6, 79×200	7.60	416.6	375	1.48	Novasep
EMD 77697	Menck	Chiralcel OD	2.3	8, 54×26	30.0	1.90	451	1.64	Novasep
SB202026	SmithKline	Chiralpak AD	1.8	8, 105×26	20.0	4.30	258	0.65	Novasep
Tramadol	UCB Pharma	Chiralpak AD		12, 100×21.25	20.0	10.0	600	0.29	Laboratory made
Cyclosporine A	AWD	LiChrospher Si		8, 100×50	5.80	5.30	44	4.18	Novasep
Cyclosporine A	AWD	LiChrospher RP		8, 100×50	1.0	12.70	19	8.40	Novasep
DOLE	Daicel	Chiralcel OF	1.23	8, 100×100	24.0	59.3	272	0.44	Novasep
DOLE	Daicel	Chiralcel OF	1.23	16, 150×30	30.0	1.66	35	0.99	UOP
EMD 122 347	Merck	Chiralcel AD	1.47	8, 93×50	20.31	17.0	311	0.59	Novasep
Cycloalkanone	Merck	Chiraleel OC	5.26	8, 103×25	20.0	16.0	1082	0.28	Novasep
Wieland-Mieschler-Ketone	FH Nürnberg	Chiralpak AD	1.30	8, 82×26	40.0	0.63	84	0.49	Novasep
Sandoz-epoxide	University of Porto	CTA		8, 100×26	10.0	1.52	59	0.80	Novasep

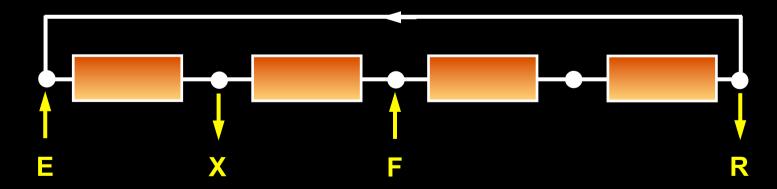
- Fases estacionárias quirais
 - Chiralpack AD (Daicel, Japão)
 - Amilose tris-(3,5-dimetilfenilcarbamato)
 revestindo partículas de silica-gel (20 μm)
 - Chiralcel OD (Daicel, Japão)
 - Celulose tris-(3,5-dimetilfenilcarbamato) revestindo partículas de silica-gel (20 mm)

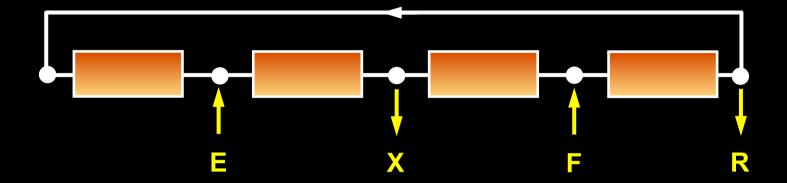


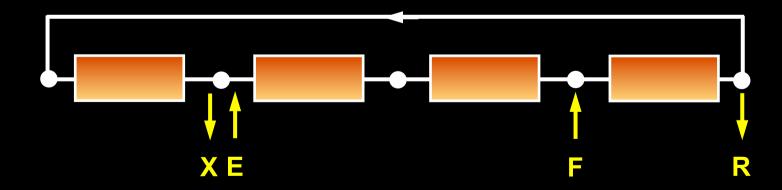


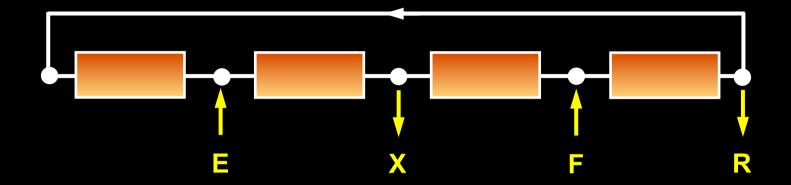
Novas variantes de operação cíclica

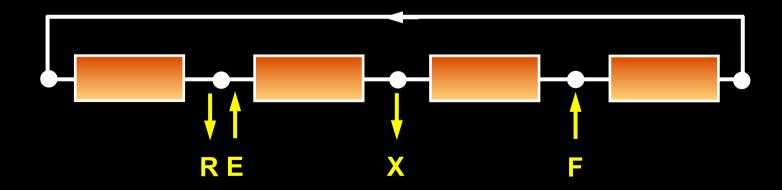

- Variação da parâmetros processuais durante o intervalo de comutação
- PowerFeed: modulação dos caudais
- Varicol: modulação do comprimento das secções, N₁/N₂/N₃/N₄
- ModiCon: modulação de c_i^F
- Operação não isocrática (gradiente de solvente)
- Aumento da complexidade processual
- melhoria da produtividade e/ou do consumo de eluente

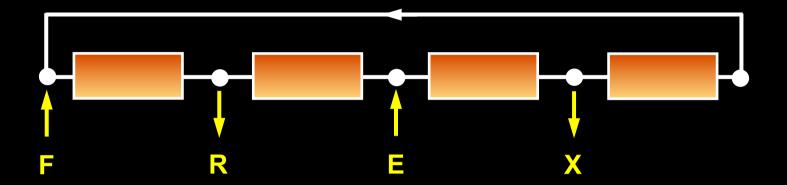

$$t=0-0.5\tau$$

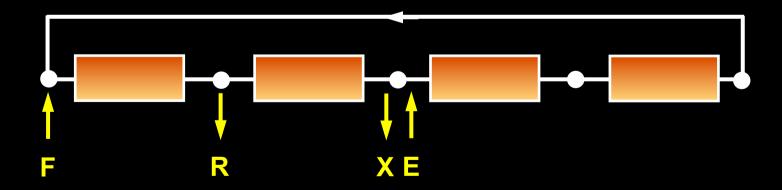


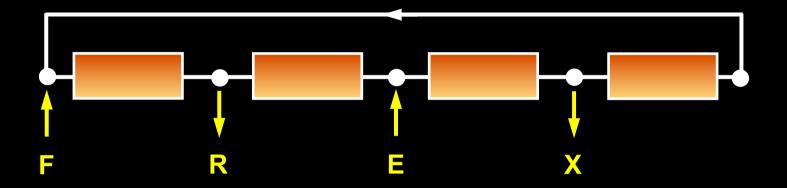

$$t = 0.5\tau - \tau$$

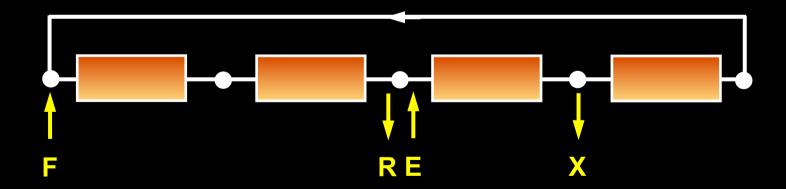


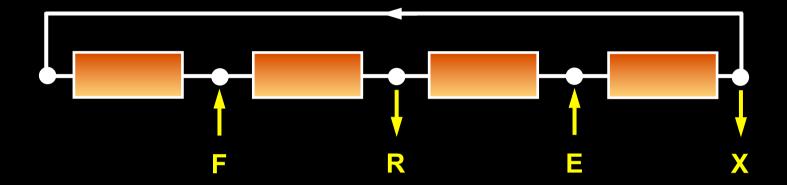

$$t = \tau - 1.5\tau$$

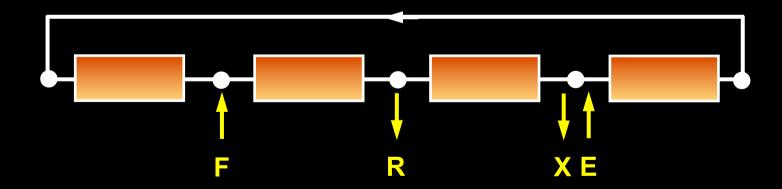


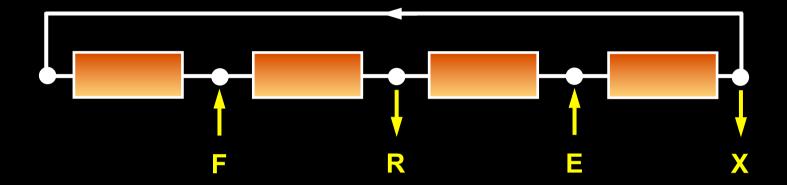

$$t = 1.5\tau - 2\tau$$

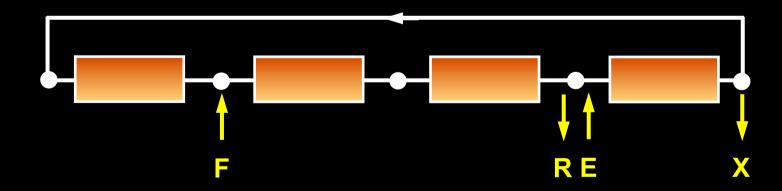


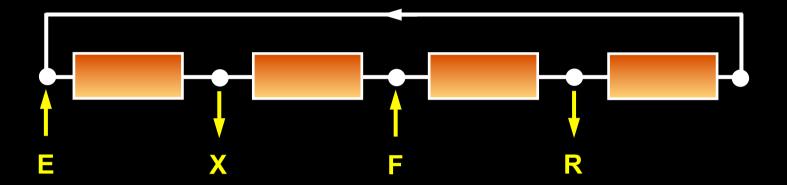

$$t = 2\tau - 2.5\tau$$

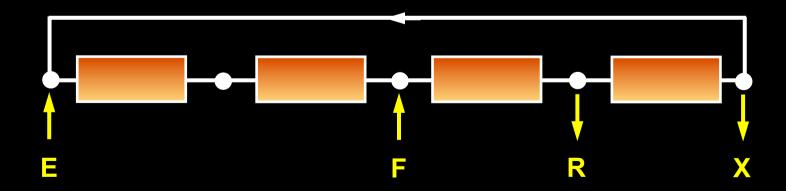



$$t = 2.5\tau - 3\tau$$




$$t = 3\tau - 3.5\tau$$




$$t = 3.5\tau - 4\tau$$

início de novo ciclo

- Introdução
- Classificação dos processos de adsorção
- Mecanismos de transporte e de transferência em adsorvedores
- Sistemas cíclicos descontínuos (batch)
- Sistemas de adsorção contínuos
- Exemplo de intensificacion processual

• La charla continua en el Power Point 2, después de un pequeño break ...